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The sequence of Jordan algebras ~?~', whose elements are the 3 x 3 Hermitian 
matrices over the division algebras R, C, Q, and O, is considered. These algebras 
are naturally related to supersymmetric structures in space-time dimensions of 
3, 4, 6, and 10, as the Lorentz groups in these dimensions can be expressed in 
a unified way as a subgroup of the structure group of the Jordan algebras ~ .  
The generators of the complete structure group and the automorphism group 
can be separated into bosonic and fermionic generators, depending on their 
transformation properties under the Lorentz subgroup. A peculiar connection 
between these fermionic generators and the supersymmetry generators of the 
superstring action is introduced and discussed. 

I. INTRODUCTION 

The first quantized superstring (Green and Schwarz, 1984) or superpar- 
ticle (Brink and Schwarz, 1981; Casalbuoni, 1976) action has a number of 
characteristic space-time symmetries. These include global super-Poincar6 
invariance, and also a local fermionic and a local bosonic symmetry. The 
space-time symmetries of  the action are indeed plentiful. Classically, 
the superstring action can be defined in dimensions 3, 4, 6, and 10. The 
space-time Lorentz groups in these dimensions can be expressed in a unified 
way in terms of  the four division algebras •, C, Q, and O, and, consequently, 
the formulation of the Lorentz group in terms of  the division algebras allows 
for a unified description of several sequences of  physical theory (Kugo and 
Townsend, 1983; Sudbery, 1984; Hasiewicz and Lukierski, 1984; Chung 
and Sudbery, 1987; Gursey, 1987; Foot and Joshi, 1988a, b; Bengtsson and 
Cederwall, 1988; Kimura and Oda, 1988; Oda et al., 1988; Manogue and 
Sudbery, 1988). One way of  expressing these four Lorentz groups in terms 
of the four division algebras is by extracting these Lorentz groups as 
subgroups of  the structure groups of  the sequence of  four Jordan algebras 
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1 2 ~ 3 ,  ~023, ~r~, ~ s  (Foot and Joshi, 1987). The classical superstring theories 
in light cone gauge were expressed in terms of these Jordan algebras in 
Foot and Joshi (1987). A motivation for reexpressing these theories in terms 
of the Jordan algebras or (equivalently) the division algebras is that these 
formulations only exist in the classically allowed dimensions of these 
theories, and thus it seems that this framework may make it easier to develop 
a deeper understanding of these theories. It is also intriguing that the 
exceptional Jordan algebra ~ s  corresponds to the d = 10 case, which is the 
critical dimension of the superstring. The connection between the excep- 
tional algebra ~ s  and the D = 10 superstring has recently received new 
emphasis in relation to the algebra of vertex operators (Goddard et al., 
1987; Corrigan and Hollowood, 1988a, b; Ferreira et al., 1988; Gunaydin 
and Hyun, 1988). 

The outline of this paper is as follows. Section 2 is devoted to establish- 
ing our notation and reviewing the formulation of the Lorentz groups in 
terms of the subgroup of the structure groups of the Jordan algebras. In 
Section 3, we consider the covariant superstring action and reformulate that 
action in terms of the Jordan algebra. In Section 4, we discuss the decomposi- 
tion of the automorphism group and the structure group in terms of the 
Lorentz subgroup. In Section 5, a toy string Lagrangian is considered, 
whereby the symmetries of the toy Lagrangian are related to the structure 
group transformations. In Section 6, it is shown that the toy model construc- 
tion of Section 5 can be extended in a rather peculiar way to the case of 
the superstring action in light-cone gauge. Finally, in Section 7 we conclude. 

2. JORDAN ALGEBRA AND THE LIGHT-CONE SUPERSTRING 

Jordan algebra was initially introduced by Jordan (1933) and further 
developed by Jordan et al. (1934). These authors were concerned with early 
problems of the quantum theory, which have long since been accounted 
for. Contemporary efforts to utilize Jordan algebra have focused on the 
exceptional Jordan algebra ~3  s (Gunaydin and Gursey, 1973; Gursey, 1975; 
Beidenharn and Truini, 1981; Nambu, 1973) [see also the review in Sorgsepp 
and Lohmus, 1979). 

The formally real Jordan algebra can be defined axiomatically as 
follows: 

A. B = B'  A (commutativity) (la) 

(A, B, A 2) = 0 (Jordan identity) (lb) 

A2+B2=0 ~ A o r B = 0  (reality) (lc) 

where we have introduced the associator defined by 

(A, B, C ) = ( A .  B) .  C - A .  (B .  C) (2) 
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Observe that the algebra is commutative, but not associative. However, the 
algebra is power associative, i.e., a " A "  = A "§ (which is a consequence of  
the above axioms). Every finite-dimensional Jordan algebra, with one excep- 
tion, can be expressed in terms of real matrices. The product is the Jordan 
product: 

A o B = �89 + B A )  (3) 

where the product  on the right-hand side is the usual matrix multiplication. 
The exception is the algebra 93~, whose elements are the 3 x 3 Hermitian 
matrices over the octonions (with the Jordan product). 

There are several ways in which Lie groups can be defined by the 
Jordan algebras (Koecher,  1967; Gunaydin,  1979). The automorphism group 
of a Jordan algebra consists of the group of linear transformations preserving 
its multiplication table. These transformations can be expressed as follows: 

M ' = M + I  ( A , M , B ) + I  ( A , ( A , M , B ) , B ) +  ' ' '  (4) 

where A, B are traceless elements of  the particular Jordan algebra under 
consideration. For the exceptional Jordan algebra ~ 8 ,  the automorphism 
group is the Lie group F4. The Lie algebra defined by the automorphism 
group is called the derivation algebra of  the Jordan algebra. A generalization 
of the automorphism group is the reduced structure group, with infinitesimal 
transformations of the form 

6 M  = (A,  M, B)  + C o M (5a) 

6/~ = (A,/~r, B) - C o )~ (5b) 

where A, B, C are traceless elements of the Jordan algebra. The Lie algebra 
defined by the reduced structure group will be denoted as the structure 
algebra of  the Jordan algebra. The representations M and M transform 
contragrediently with respect to the form (i.e., this form is invariant) 

I = Tr M o / ~  (6) 

Finite transformations can be obtained in the usual way by exponentiation 
of the infinitesimal transformations 

/ 
t ~ f i n i t e m  = 6 M  +-:-- 6 ( 6 M ) + .  �9 �9 

2! 
(7) 

For the sequence of Jordan algebras ~ 3  ~ , ~32, ~2r~ 4, and ~)J~3 s, the automorph- 
ism and reduced structure groups are given in Table I. The Lie groups in 
this table form part of the Freudenthal-Tits magic square (Schafer, 1966). 
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Table I. The Automorphism and Reduced Structure Groups of the Jordan Algebras ~S~ 

Group ~ ~ ~ 4  ~8  

Automorphism group SO(3) SU(3) Sp(6) F 4 
Reduced structure group SL(3, R) SL(3, C) SU*(6) E6(_26 ~ 

For the most part, we will consider the generic Jordan algebra 93~, where 
992~ can be either ~ ,  ~32, ~3~4, or 93~ 8. A basis for ~ can be expressed as 

tie, i) A s =  0 , Bf = 0 , Cs = 0 

0 e 7 0 e~ 

(i o!) "~ = 1 , J1 = - 1 , J l  = 1 

0 0 0 - 

where f =  O, . . , d ( ~ ) - l .  
The covering group of  the Lorentz group in D = 3 ,  4, 6, and 10 

dimensions can be expressed as a subgroup of the reduced structure group 
of the Jordan algebras ~)2~. The infinitesimal action of  the Lorentz group 
on an element of  the algebra ~r is (Foot and Joshi, 1987; Gamba,  1967) 

~ M  = ~fk(Af,  M, Ak)+~kx(J1, M, A k ) + ~ A k  o M+~3J1 ~ M (9a) 

~M=~fk(AT,-lf4,  A k ) + ~ ( J , , I V I ,  A k ) - ~ A k O ) f I - ~ 3 J l o l V I  (9b) 

and f, k = 0 , . . . ,  d(•) - 1. The representation M breaks up, under the action 
of  the subgroup (9), into the irreducible representations ,o XXl!) (000 o:) (i0i) 

0 . .  0 

The representations X, A, and q~ correspond to the vector, spinor, and 
scalar of the Lorentz group. Similar results hold for the representation M, 
where the irreducible representations under the subgroup generated by the 
transformation (9b) can be denoted as in (10), but with the indices raised, 
i.e., 

0 A 1 A 2 0 ' 
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Dirac matrices can be introduced by first defining generalized Pauli matrices: 

;,) e* ' i = 0 , . . . , d ( A ) - I  

~~176 U = - o  J,  j = l , . . . , d ( A ) + l  (12) 

The o "" matrices have SL(2, A) index structure: 

o-~ ~-~ o -~a  , ~ ~--~ ~ (13) 

For A = C these matrices correspond to the usual Pauli matrices. In the 
Jordan formalism these matrices have to be embedded into the elements of  
the Jordan algebra 9~" 3 as follows: 

I~, �9 = , ~ "  = 

0 0 

(14) 

The E"  matrices transform like vectors, which is analogous to the SL(2, C) 
formalism. Observe that X defined in (10) can be expressed as X - - - X , E  ~, 
which is analogous to the SL(2, C) formalism. Denote by A ("~ the spinor 
associated with ~02~. Then there exist the following correspondences:  

A (1) - d = 3 Majorana spinor 

A (2~- d = 4 Weyl spinor (15) 

A (4) - -  d = 6 Weyl spinor 

A (8)-  d = 10 Majorana-Weyl  spinor 

In order to complete the translation of the usual SO(n + 1, 1) formalism to 
that of ~ ' ,  we will list the correspondence of various Lorentz invariants. 
We will take the spinors to be anticommuting, i.e., the coefficients of  each 
element of  the algebra A will be Grassmann.  The Jordan product  only 
operates on the Jordan matrix part, i.e., if J1, -/2 are two elements of  the 
Jordan algebra, then J1 ~ J2 = J~J~Am ~ An (here the Am form a basis of  the 
Jordan algebra, i.e., Jl = J'~A,,, .12 = J'~Am). I f  we consider two spinors AI 
and A2 with components  0, A, respectively, then 

Tr(3.1 o A2) = 2 Re(0~A~) ~ i (~ tp2+  t~2~9,) 

Tr(M o 9," o A2) = Re( 0~O'at3Ao ) ~ ~(fl  Y'q'z - 4~2Y'~) 
(16) 

Re(0 cr~cr A~) 

4 
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where Re denotes the real part and Tr denotes the trace. The invariants of 
SL(2, A) thus appear as the component form of the equations of the Jordan 
formulation of the Lorentz group. The last correspondence indicates the 
relation with the usual 2 ~ component formalism, where q~ is Majorana- 
Weyl for D --- 10, Weyl for D = 6, Majorana or Weyl for D = 4 [if 0 is taken 
to be Majorana, then a further factor of 1/2 should be included on the 
right-hand side of equation (16) for this case], and Majorana for D = 3. 
We note in passing that there is an identity for Majorana spinors which 
will simplify this last correspondence: 

~l 'y /x l ' ) /p~2 " " " ")//zn~J2 ~ - ( - - 1 ) n ~ 2 ' ) / / z n ' ~ / z  . . . . . . .  ')//zll~/1 ( 1 7 )  

To apply the g)2~' formalism to the superstring in light-cone gauge 
(Green and Schwarz, 1982), we require the transverse (light-cone preserving) 
subgroup of the Lorentz group. The infinitesimal transformations are given 
by the first term equation of (9): 

6M = efk(Af, M, Ak) (18) 

Here, M = Xr,  A1, A2, where 

XT=Xiai, A l = A',B~, A2 = A~C, (19) 

and the matrices Ai, B;, and C~ are defined in (8). The light-cone conditions 
a r e  

X 11 =xll+2a'pllr,  A2=0 (20) 

Note that X 11 = 2U2X +. The action for the light-cone (classical) superstring 
is 

S = T r f  d~ d'r-~-~ O'~XT~ O'~xr + i-j- ~' ~ ~-~  p" (21) 

Here A~ is a world-sheet spinor (the world-sheet indices are suppressed) 
as well as a space-time spinor, AI=A~p ~ and s  ('2~ In 
Foot and Joshi (1987) we proceeded to find the equations of motion and 
introduced the spectrum of states. Quantization was defined through quan- 
tization of the coefficients-A~ and X J defined in (19). As is well known, 
quantization of equation (21) is only consistent for d = 10 (Goddard et al., 
1973), which intriguingly corresponds to the exceptional Jordan algebra ~ 3  s . 

3. THE COVARIANT SUPERSTRING ACTION 

Hitherto, we have analyzed the superstring in light-cone gauge. We 
will now examine the covariant superstring action (Green and Schwarz, 
1984). This action has global Poincar6 invariance, as well as local fermionic 
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and  a local boson ic  symmetry.  We here reformulate  this act ion in terms of  
the Jo rdan  algebraic formalism. The act ion is 

S =  f do 'd 'r  (L~+L2)  (22) 

l 

J 

where 

and 

L~ = J (~ - -gg~r  TrlT~ o He) (23a) 

L2 = - ie ~ {Tr( A ~ o 0 ~X o az A ~ ) - Tr(A 2 o a ~)( o 3z A 2 ) } 

+ e ~  Tr(A ~ o ~,- o O~A ~) Tr(A 2 o ~ o O/3A 2) (23b) 

II,~ = O,~X - i Z ~  Tr(A a o ~ o OaA A) (24) 

Here A = 1, 2 is an internal supersymmetry  index, and X and A are defined 
in (10). The act ion has the fol lowing symmetries:  a global space-t ime 
supersymmetry  defined by 

~A a = C A 
(25) 

6 X  = i Z  u Tr( (  A ~ . ~  ~ A A) 

and a local fermionic  symmetry  [or Siegel (1983) symmetry]  given by 

8• A ~ = 4iII,~P"_ ~ o I(t~ 

6K A 2 = 4il-I,~P+ t3 o Kt~ 
(26) 

3 K X  = i E .  Tr A a o ~"  o 6K A A 

6 K ( x / ~ g , , t ~ ) = 8 x / - ~ ( p ~ _ v V ~  - ,  , ,~, t~ K~-2 T r K ~ o 0 v  A + p +  p+  Tr oO~A 2) 

where 

p:~ = k(g-~ + e ~ / 4 - ~ )  (27) 

The act ion is also invariant  under  the local boson ic  t ransformat ions  

3AA 1 = ~---ff p~_~0t~AlA~ 

8A A 2 --- ~ P+~ 0~ A2A= (28) 

6 ~ X  = i Z ~  Tr A A o ~.~ z 6x A A 

Invar iance  o f  L~ under  the global supersymmetry  t ransformat ions  (25) is 
s traightforward.  Invar iance  o f  L2 is more  complex,  and requires the identity 

~., ~ A~ Tr(A2 o "Z" o A 3 ) + s  ~ A2 Tr(A3 o ~." o A1) 

+~ .~~  A3 Tr(A~ o E"  o A2) = 0 (29) 
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This is analogous to the identity 

'~/t I~11if2 ")/g" ~/3 + "~/.LI//21if3 ')//X~]l "~ ")/~ tP3 Iffl ' ) /b~ 2 ~- 0 (30) 

which arises in the usual spinor formalism in the proof  of  invariance of  L2 
and also in the proof  of  supersymmetry for super-Yang-Mills theories (Brink 
et al., 1977). The usual proof  of equation (30) requires the use of Fierz 
transformations, and holds only for d = 3 Majorana spinors, d = 4 Majorana 
spinors, d = 6 Weyl spinors, and d = 10 Majorana-Weyl spinors. The proof  
of equation (29) in this Jordan framework is very simple, and can be shown 
to hold from simple properties of the division algebras (Fairlie and 
Manogue, 1987). Invariance of the action under the other symmetries (26) 
and (28) is reasonably straightforward to check. In doing so, we again 
require the identity (29), and also the identities 

(~,~, E ~,/~) + (E~, E ~, K)  = - �89 ~ /~  (31a) 

"~  o E ~ +E~ o E ~ = -2"q~'L (31b) 

where 

L =  1 

0 

and ~7 ~' ~ has signature ( -  + + + .  �9 "). 

(32) 

4. D E C O M P O S I T I O N  OF THE STRUCTURE G RO U P  

The infinitesimal transformations of  the automorphism and structure 
groups can be separated into two types. We will focus on the structure 
group; the corresponding results for the automorphism group can be easily 
obtained, as the automorphism group is a subgroup of  the structure group. 
The two types of transformations can be classified as follows: 

Ltype:  ~ ( X + q ~ ) =  a* fl , ~A= 0 (33) 

0 0 b* c* 

S type: ~(X+q~)  = 0 0 , 6 A =  fl (34) 

b* c* 0 

Recall that X, d~, and A are defined in (10). The L-type transformations 
include the Lorentz transformations given in the previous sections. The 
L- and S-type transformations are given below. 
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L Type 
Lorentz: 

6 M = ~ Ik ( Ay, M, Ak ) + ~ ( J~ , M, Ak ) + ~k Ak o M + ~3J~ ~ M 

Phase: 

For d = 4, 

For d = 6, 

U(1): 

~ :  

8M = 4r/(Bo,  M,  4 B,)+~n(Co.  M. C1) 

6M = r/'(Bo, M. B,)- �89 B,. M, Bj) 

1457 

aM = -/2 ~ M (35) 

S Type 

s~: aM = 2~1~(Jt, M, Bk)- -2~(J l ,  M, Ok) 

$2: 6 M = K k B k  o M + KgCk o M (36) 

Recall that Ak, Bk, Ck, .11, and J2 are defined in (8). Here i, j, l run from 
1 to 3. In component  form these phase transformations correspond to ~x = 0, 
6A, = i~a~ for ~J)2~, and the quaterionic counterpart  8x = 0, 6A~ = -r/iei)t, 
( i = 1 , . . . , 3 ) .  The algebras ~323 ~ and ~3~3 s do not have analogous phase 
rotations. The algebra ~ 1  obviously does not, as its elements are real 
matrices. The algebra 93~38 might be expected to have an associated octonionic 
phase. However, such a phase cannot exist as an automorphism, which is 
a consequence of the nonassociativity of the octonions. Note that for L c {L 
type} and S e {S type}, then the following Lie brackets hold: 

[L, L] e L (37a) 

[L, S] e S (37b) 

[S, S] ~ L (37c) 

The transformations associated with the structure group or the 
automorphism group of  the Jordan algebras can be interpreted physically, 
as we will show in the following sections. 

. A TOY M O D E L  

Consider the following toy string action: 

if S = T r ~ - ~  dcrdro~X oa~X+O,~TkoO~A+O,~oO'~d9 (38) 
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where X, A, qb are defined in (10). The variables in this toy Lagrangian are 
the usual position coordinate X, which is a space-time vector, but a world- 
sheet scalar, while A is a space-time commuting spinor and a world-sheet 
scalar and qb is a space-time and world-sheet scalar. The action (38) is 
invariant under the S 0 ( 9 ,  1) Lorentz transformations (9a), (9b). There are 
also phase rotations for the d = 4 and d = 6 actions given by 

f o r d = 4 :  6 M  '* = ~7(Bo, M, BO+4rl (Co,  M, CO (39a) 

for d = 6: 6 M  M, Bi) 1 t = ~Ti(Bo, -~'O eto(Bi, M, Bj) (39b) 

where M = X, A, qb. The action is also invariant under the following 
fermionic transformations:  

8 X  = E ~ Tr(s e o ~,~ o A), 6X = 0 (40a) 

6dp = 0, 6 ~  = - P  Tr(A o ~) (40b) 

6A = ~: Tr ~b, 6fit = -2_X o sr (40c) 

and 

6 x  = o, &~  = -s  T r (X  o X .  o , i )  

6(I) = P Tr(~t o A), 6 ~  = 0 

6 A = 2 X o  ~, 8 * = - r ~  T r ~  

where P is the projection 

(41a) 

(41b) 

(41c) 

P = 0 (42) 

0 

Observe that these fermionic transformations treat X, ~ ,  A and X, dO, A as 
independent  variables. The conserved currents associated with the above 
symmetries can be calculated via Noether 's  procedure. The currents are 

1 
J~ = - - - - T r ( 0 % ~  o 6 X  + O"A o 8A  + O'~ff, o 6cb 

8~" 

+ 6 2  o O'~X+ 6X o 0 ~ a +  8 ~  o 0~'qb) (43) 

and the corresponding charges are given by 

fo fo '~ jo  do- = ---8~.1 Tr(0~ o 8X+O~ o 8 A + 0 ~  o 6 ~  

+ 8 X  o O~ + 8A o 0~ 6 ~  o 0~ dcr (44) 

where 6X, 6A, 6alp and 6X, 6d~, 6 '  are given by (9) for the Lorentz current 
and charge, (39) for the phase, and (40) and (41) for the currents and 
charges associated with the fermionic symmetries. 
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The algebra of these generators is given by the structure algebra. The 
symmetry associated with the infinitesimal transformations defined by the 
structure algebra can be realized manifestly, by combining X, A, and qb to 
form the field (~ = X + A + qb. In terms of @, 

1 
= ~-~ 0~(~ 0~(~ (45) 

and the Lorentz, phase, and fermionic transformations are given by 

~ = (a ,  (~, B) + C o (~ (46a) 

6(~ = (A, @, B) - C o O (46b) 

The fermionic transformations ~t and ~: are given in terms of the S-type 
transformations (36) by 

~q- (7 =-- ekBk + ekCk (47a) 

- ~ =-- KkBk + KkCk (47b) 

6. A GENERALIZATION OF THE TOY MODEL TO THE 
SUPERSTRING ACTION 

An alternative description of the Lagrangian in Section 5 which we 
will generalize to the case of the superstring can be defined as follows: 

1 
~, = ~ Tr{0~3~ o O'~X +O,~Ao O~A+0~c~ o 0~dP 

+ (O,,X+O.~) o O~A+Tr(O~X +O.@) o O"A} (48) 

Equation (48) arises if equation (45) is expanded out and all the terms are 
included, even those which would usually be neglected (as they have zero 
trace), such as the last two terms in equation (48). Thus, instead of defining 
the one field ~ ,  we consider the three fields X, A, @. The transformations 
generated by 

~ 3 X = ( A , X , B ) + C  oX  

6r dP, B)+Cod9 

6 A = ( A , A ,  B ) + C  oA 

(49a) 

(49b) 

(49c) 

reproduce the Lorentz, phase, and fermionic currents, even though the 
S-type transformations of (49) cannot be expressed in component form. It 
is this peculiar description of the symmetries of the toy model which we 
can generalize to other, more interesting theories. 

Consider first the superstring action in light-cone gauge. The supersym- 
metry algebra for this action is of course the super-Poincar6 algebra. Since 
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the action in light-cone gauge has only manifest transverse Lorentz invari- 
ance, we consider the derivation algebra rather than the structure algebra. 
This Lie algebra has nothing a priori to do with the symmetries of this 
superstring action. Nevertheless, a peculiar connection can be made, by 
generalizing this description of the toy model. We consider the following 
superstring action: 

s 1 6 3  ' (50) 

where 12 is given in (21) and 52' is given by 

12,= 1 Tr a~A1 ~ p~p " aXO (51) 
77 

where 0 is an arbitrary (constant) d = 2 (world-sheet) Majorana spinor and 
space-time scalar. This term analogues the last two terms of equation (48). 
Thus, while 12' is manifestly invariant under the transformations defined by 
the derivation Lie algebra associated with the sequence of Jordan algebras 
~r)2;, the fermionic transformations are nontrivially invariant in the sense 
that these transformations produce a nonvanishing current. This current is 
precisely the global supersymmetry current of the superstring in light-cone 
gauge. Furthermore, the addition of the term s does not disturb the bosonic 
currents. The fermionic current derived from 12' (and hence s + s is 

1 
J~  = - T r  ~., o p " p .  0 2  o ~ (52) 

~T 

where ~ = e0 is a world-sheet spinor and space-time spinor. Note that the 
spinor ~ can be assumed to be anticommuting without changing the essence 
of our arguments. In deriving equation (52), care must be taken in applying 
Noether's procedure. This is because the fermionic transformations do not 
have the form of a variation, which is a consequence of the result that the 
transformations cannot be expressed in component form. (This result should 
be compared with the toy model, where the transformations could be 
expressed in component form by introducing the field ~.) It turns out that 
the current is conserved if and only if the following identity is satisfied: 

T r { ( a s  o 6 M } - T r { a ~ [ a s  o 8M} = 0 (53) 

where M = X ,  A1, or (I). For ordinary transformations, equation (53) 
vanishes by virtue of the equations of motion. In the case at hand, (53) is 
indeed satisfied when the equations of motion hold. It is obvious that this 
must be the result, because E' was constructed so that the current of equation 
(52) should be equivalent to the usual supersymmetry current. Actually, the 
extra term 12' is uniquely specified modulo surface terms (which lead to the 
same charge when the appropriate boundary conditions are taken) by 
demanding that the current be nontrivial, conserved when the equations of 
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motion hold [i.e., equation (53) is satisfied], and that the term be only 
bilinear in the fields X, A. We expect from physical considerations that his 
last condition should be unnecessary, but we have not proved this. 

In this section we have only considered the superstring in the light-cone 
gauge, and have shown how the symmetries can be related to the Lie algebras 
associated with the automorphism groups as explained in Section 4. We 
now comment on the covariant superstring action, which was expressed in 
the Jordan algebra framework in Section 3 by extracting the Lorentz groups 
in 3, 4, 6, and 10 dimensions as subgroups of the structure groups of the 
Jordan algebras ~ .  It thus appears that the Lie algebra defined by the 
structure group is the appropriate starting point. This algebra contains two 
fermionic generators (which we denote by ~ and fi) which transform 
contragrediently. The result that the structure algebra contains two fermionic 
generators and that they transform contragrediently to each other is intrigu- 
ing because two such fermionic symmetries arise in the covariant superstring 
action. However, the local K transformation of the covariant superstring 
action is rather peculiar, as this transformation cannot be derived from a 
conserved current (Green et al., 1987). It is therefore unclenr whether there 
exists any correspondence between the fermionic symmetries of the 
covariant superstring action and the structure algebras of the Jordan algebras 
~ .  

7. CONCLUDING REMARKS 

The structure groups of the sequence of four Jordan algebras ~Y~ 
contain the Lorentz groups in 3, 4, 6, and 10 dimensions. These dimensions 
correspond to the four classical superstring theories. A consequence of 
formulating the classical superstrings in terms of the Jordan algebraic 
framework is that the four classical superstring theories appear in one-to-one 
correspondence to the four division algebras. In this formulation one is 
naturally interested to know whether the complete structure group or the 
complete automorphism group may be related to all of  the symmetries of 
the superstring. We have found a way of making such a connection, although 
the usefulness and implications of this connection remain unclear. 
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